Learning to rank spatio-temporal event hotspots

نویسنده

  • George Mohler
چکیده

Crime, traffic accidents, terrorist attacks, and other space-time random events are unevenly distributed in space and time. In the case of crime, predictive policing algorithms aim to focus limited resources at the highest risk crime hotspots in a city. A crucial step in the implementation of these strategies is the construction of scoring models used to rank spatial hotspots. While these methods are evaluated by area normalized Recall@k (called the Predictive Accuracy Index), models are typically trained via maximum likelihood or rules of thumb that may not prioritize model accuracy in the top k hotspots. Furthermore, current algorithms are defined on fixed grids that fail to capture risk patterns occurring in neighborhoods and on road networks with complex geometries. We introduce CrimeRank, a learning to rank boosting algorithm for deterniming a crime hotspot map that directly optimizes the percentage of crime captured by the top ranked hotspots. The method also employs a floating grid combined with a greedy hotspot selection algorithm for accurately capturing spatial risk in complex geometries. We illustrate the performance using crime and traffic incident data provided by the Indianapolis Metropolitan Police Deparment and IED attacks in Iraq.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass...

متن کامل

Modeling of spatio-temporal of albedo over Iran

The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the high...

متن کامل

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning

Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate diffe...

متن کامل

Spatio-Temporal Analysis of Drought Vulnerability using the Standardized Precipitation Index (Case study: Semnan Province, Iran)

This study was conducted to identify drought event and its emerging regions in Markazi desert, Iran with focus onSemnan province in a 30 years statistical period. In this research, 61 stations having adequate data selected and usedafter extracting annual statistic from monthly and daily data. Standardized precipitation index values for each stationwere calculated and classified. The Results hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017